分类
外汇基本知识

如何测量突破的强度

图5|纳米金刚石输送药物(来源:Medgadget)

如何测量突破的强度

近期,我校激光光谱研究所贾锁堂教授和肖连团教授带领团队在基于原子体系的微波精密测量研究中取得了突破性进展,相关研究成果“Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy”于2020年6月1日发表在Nature Physics (自然·物理学)。论文第一作者为博士研究生景明勇、共同第一作者为胡颖教授,通讯作者为张临杰教授和肖连团教授,研究人员还包括马杰教授、张好副教授。

世界上束流强度最高深地实验设施成功出束

光明日报北京12月26日电(记者袁于飞)在浩瀚无垠的宇宙中,恒星发光发热的能量来自其内部发生的热核聚变反应,这不断发生的核过程为自然界所有化学元素提供了赖以生成的“土壤”,核天体物理就是探索这一奇妙过程及其内在规律的学科。核天体物理是基础科学研究的前沿领域之一,基于深地实验室的天体核反应测量能够提供最基础和精确的实验数据。12月26日,由中核集团原子能院和中科院近物所自主研制的世界上束流强度最高深地实验设施——锦屏深地核天体物理加速器成功出束,束流强度达到2mA,综合性能达到国际同类装置先进水平。这是我国核天体物理研究取得的重大突破,标志着我国完全掌握强流高压加速器制造技术,并将进一步推动中国锦屏地下实验室成为面向世界开放的国家级基础研究平台。

如何测量突破的强度

微波是人类观察世界的另一只“眼睛”,利用微波遥感技术可以测绘人类难以涉足地区的地形地貌、探索广袤神秘的宇宙太空。随着人类对未知世界探索的不断深入,经典微波测量方法在探测灵敏度和测量精确度方面都已经无法满足现实需求。
在国家重点研发计划“量子调控与量子信息”重点专项等科技计划的支持下,山西大学研究团队提出基于可控原子体系的微波超外差测量新原理和新技术,从根本上避免了经典微波测量方法中自由电子随机热噪声的影响,实现了目前国际上最为灵敏的、可溯源至国际标准单位制的微波相敏测量。他们提出了基于可控里德堡缀饰态与微波电场相干耦合新原理,完成了Hz量级超窄线宽激光的大范围连续可调谐、相位及强度噪声压缩等技术攻关,实现了里德堡量子态精确制备和操控;在国际上首次实现里德堡原子微波超外差接收机样机,极大提升了微波电场场强的探测灵敏度,微波测量灵敏度达55 nV/(cm Hz1/2),优于之前国际最好水平1000倍,最小可探测微波场强约400 pV/cm,优于之前国际最好水平10000倍;突破微波量子测量的场强和极化测量局限,实现了利用里德堡原子对微波电场相位和频率的测量。同时完成了X波段雷达测速样机的功能演示,最小速度分辨率达到5 μm/s (3mHz),可用于对超低速度运动目标到超高速飞行器的探测。该工作极大地推动了微波电场精密测量领域的发展,在国防安全、微波通信、量子计量、电子信息等领域具有重要的应用价值。

量子精密测量技术大突破,应用正当时,国仪量子成果斐然

图1|金刚石中的氮-空位色心(来源:NIST)

中科大微观磁共振重点实验室,基于NV色心的纳米核磁共振,首次以一对耦合的碳-13核自旋为探测对象,实现纳米二维核磁共振谱。

图2|(a)采取深度学习算法之后,可以从少量的信息中提取复杂的纳米核磁谱线信息,从而大大提高实验测量效率。(b) 深度学习结合矩阵填充算法在保持重构能力的同时可以去除掉偏倚(来源:Nature)

国内的应用

图3|量子钻石单自旋谱仪(来源:国仪量子)

图4|荧光纳米金刚石(来源:FND biotech)

近日,英国伦敦大学的Benjamin S. Miller等与Rachel A. McKendry课题组合作,研究了荧光纳米金刚石作为体外诊断的超灵敏标签,利用微波场调节发射强度和频域分析,将信号与背景荧光信号分离,突破了灵敏度的限制。研究成果以论文“Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics”,发表在《自然》杂志上[6]。

病毒的解决方案

图5|纳米金刚石输送药物(来源:Medgadget)

研究的意义

图6|对抗新冠病毒(来源:ECRIN)